# Viscosities and Densities of Binary Liquid Mixtures of Dimethyl Sulfoxide with Chlorobenzene, Pyridine, and Methyl Ethyl Ketone at 25, 35, 45, and 55 $^{\circ}$ C

# G. S. Gokavi, J. R. Raju, T. M. Aminabhavi,\* R. H. Balundgi, and M. V. Muddapur<sup>†</sup>

Department of Chemistry, Karnatak University, Dharwad 580003, India

Density and viscosity data are presented for three binary solvent mixtures of dimethyl sulfoxide with chlorobenzene, pyridine, or methyl ethyl ketone at 25, 35, 45, and 55 °C over the whole range of compositions. The experimental data of viscosities are fitted to theoretical relations proposed by McAllister, Auslander, and Heric and also to a polynomial equation. An attempt is also made to predict thermodynamic functions such as excess volume, excess enthalpy, and excess entropy.

### Introduction

Due to the recent developments made in the theories of liquid mixtures and experimental techniques, the study of binary liquid mixtures has attracted several researchers in the field (1). A familiar approach is the hypothesis that there is a direct correlation between the viscosity and the thermodynamic behavior of the solution. Quite a few attempts have been made in the literature from time to time to theoretically predict viscosities of binary liquid mixtures (2–5). Among these, theoretical relations proposed by McAllister (2), Auslander (3), and Heric (4, 5) and a polynomial relation (6) have been used extensively to calculate viscosities of binary mixtures.

The present investigation is a continuation of the effort to understand the transport properties of binary liquid mixtures (6, 7). Among the nonequilibrium properties of liquid mixtures, viscosity has been studied here in order to examine several empirical relations. The closeness of the fit between each of the above relations and the experiment is examined. The binary mixtures consisting of dimethyl sulfoxide (Me<sub>2</sub>SO) with others like chlorobenzene (CB), pyridine (PY), and methyl ethyl ketone (MEK) were selected and their viscosities and densities at 25, 35, 45, and 55 °C were measured. The solvent dimethyl sulfoxide was particularly chosen due to its high polarity and its importance as a versatile solvent in synthetic chemistry (8, 9). The other components like chlorobenzene, pyridine, and methyl ethyl ketone range from low to high polarity. An attempt has also been made to compute excess thermodynamic functions such as volume, entropy, enthalpy, and free energy of mixing; these results are discussed in relation to the nature of mixing species.

#### **Experimental Section**

All the solvents used were of reagent grade and were purified by standard procedures (10). Me<sub>2</sub>SO, CB, and MEK were Sisco samples and pyridine was a BDH sample. The purity of each liquid was checked (11) by its density, viscosity, and refractive index (see Table I).

Solvent mixtures were prepared over the entire range of 0-100 vol %. In the first and the last step, the increase in composition was 5% and over the remaining middle range, the increases were in steps of 10%. All the binary mixtures studied consisted of Me<sub>2</sub>SO as the first solvent and one of the other

<sup>†</sup>Department of Statistics, Karnatak University, Dharwad, India, 580003.

three liquids as the second solvent. To minimize preferential evaporation of one of the solvents in the mixture, each binary mixture was prepared on the same day on which it was studied. The mole fractions  $(X_i)$  of the liquids in the binary mixtures were calculated from the volumes and densities.

The densities of pure liquids and binary mixtures at different temperatures were measured with a pycnometer. The viscosities were obtained with an Ostwald viscometer by comparing the flow times of a pure liquid or a binary mixture with that of water at different temperatures. All numerical calculations were performed on a DCM microcomputer with programs written in machine language.

## **Results and Discussion**

The experimental data of densities and viscosities at 25, 35, 45, and 55 °C for three binary systems, namely, Me<sub>2</sub>SO (1)–CB (2), Me<sub>2</sub>SO (1)–PY (2), and Me<sub>2</sub>SO (1)–MEK (2), are respectively presented in Tables II–IV. For each temperature, the viscosities of the mixtures are plotted against mole fraction ( $X_2$ ) and smoothed curves are drawn (Figures 1–3). In the three systems studied here, the graphs of viscosity vs. mixture composition deviate somewhat from linearity thus suggesting a nonideal behavior.

In the theoretical analysis of our data, the binary viscosities were predicted by using the relations of McAllister (2), Auslander (3), and Heric (4, 5) and a polynomial relation ( $\boldsymbol{6}$ ) which are shown below.

McAllister's relation for the kinematic viscosity of a liquid mixture is

$$\ln \eta = X_1^3 \ln \eta_1 + 3X_1^2 X_2 \ln \eta_{12} + 3X_1 X_2^2 \ln \eta_{21} + X_2^3 \ln \eta_2 + L \quad (1)$$

where

$$L = -\ln (X_1 + X_2 M_2 / M_1) + 3X_1^2 X_2 \ln (\frac{2}{3} + M_2 / 3M_1) + 3X_1 X_2^2 \ln (\frac{1}{3} + 2M_2 / 3M_1) + X_2^3 \ln (M_2 / M_1)$$
(1a)

Here,  $\eta$ ,  $\eta_1$ , and  $\eta_2$  are respectively the viscosities of the mixture and pure components 1 and 2. The above eq 1 contains two adjustable parameters, namely,  $\ln \eta_{12}$  and  $\ln \eta_{21}$ , which were determined by a least-squares method. The term *L* was computed from a knowledge of the composition of the mixture and of the molecular weights  $M_1$  and  $M_2$  of the pure components.

Auslander's equation is

$$X_{1}(X_{1} + B_{12}X_{2})(\eta - \eta_{1}) + A_{21}X_{2}(X_{2} + B_{21}X_{1})(\eta - \eta_{2}) = 0$$
(2)

where  $A_{21}$ ,  $B_{12}$ , and  $B_{21}$  are the three binary interaction parameters which were calculated again from a least-squares fit of the experimental data.

Heric's expression is

$$\ln \eta = X_1 \ln \eta_1 + X_2 \ln \eta_2 + X_1 \ln M_1 + X_2 \ln M_2 - \ln (X_1 M_1 + X_2 M_2) + \Delta 12 \quad (3)$$

Table I. Some Physical Properties of Pure Liquids at 25 °C

|                     | density, g mL <sup>-1</sup> |        | viscosity, kg m <sup>-1</sup> s <sup>-1</sup> |        | refract. index |        | bp, °C |               |
|---------------------|-----------------------------|--------|-----------------------------------------------|--------|----------------|--------|--------|---------------|
| liquid              | obsd                        | lit.   | obsd                                          | lit.   | obsd           | lit.   | obsd   | lit.          |
| dimethyl sulfoxide  | 1.0986                      | 1.1014 | 0.1959                                        | 0.1960 | 1.4745         | 1.4783 | 189.0  | 189.0         |
| chlorobenzene       | 1.1060                      | 1.1010 | 0.0757                                        | 0.0757 | 1.5250         | 1.5248 | 131.0  | 131.7         |
| pyridine            | 0.9811                      | 0.9780 | 0.0903                                        | 0.0899 | 1.5100         | 1.5092 | 115.0  | 115.5         |
| methyl ethyl ketone | 0.8020                      | 0.7995 | 0.0407                                        | 0.0409 | 1.3760         | 1.3761 | 79.5   | 7 <b>9</b> .5 |

#### Table II. Density and Viscosity Data of the Dimethyl Sulfoxide (1)-Chlorobenzene (2) System

|       | density, g m $L^{-1}$ |       |       |        |        | viscosity, kg $m^{-1} s^{-1}$ |        |        |  |  |
|-------|-----------------------|-------|-------|--------|--------|-------------------------------|--------|--------|--|--|
| $X_2$ | 25 °C                 | 35 °C | 45 °C | 55 °C  | 25 °C  | 35 °C                         | 45 °C  | 55 °C  |  |  |
| 0.0   | 1.098                 | 1.093 | 1.089 | 1.080  | 0.1959 | 0.1605                        | 0.1310 | 0.1143 |  |  |
| 0.035 | 1.098                 | 1.093 | 1.089 | 1.080  | 0.1865 | 0.1559                        | 0.1273 | 0.1083 |  |  |
| 0.072 | 1.099                 | 1.094 | 1.089 | 1.081  | 0.1803 | 0.1474                        | 0.1224 | 0.1036 |  |  |
| 0.148 | 1.100                 | 1.094 | 1.090 | 1.081  | 0.1682 | 0.1390                        | 0.1142 | 0.0980 |  |  |
| 0.230 | 1.103                 | 1.095 | 1.090 | 1.082  | 0.1564 | 0.1290                        | 0.1098 | 0.0915 |  |  |
| 0.317 | 1.101                 | 1.095 | 1.091 | 1.0829 | 0.1421 | 0.1170                        | 0.1021 | 0.0865 |  |  |
| 0.411 | 1.103                 | 1.096 | 1.091 | 1.0831 | 0.1299 | 0.1077                        | 0.0927 | 0.0808 |  |  |
| 0.511 | 1.103                 | 1.096 | 1.091 | 1.0836 | 0.1193 | 0.0986                        | 0.0865 | 0.0755 |  |  |
| 0.619 | 1.103                 | 1.097 | 1.092 | 1.084  | 0.1085 | 0.0929                        | 0.0833 | 0.0712 |  |  |
| 0.736 | 1.104                 | 1.097 | 1.092 | 1.0846 | 0.0966 | 0.0823                        | 0.0742 | 0.0632 |  |  |
| 0.863 | 1.104                 | 1.098 | 1.093 | 1.0846 | 0.0866 | 0.0733                        | 0.0668 | 0.0600 |  |  |
| 0.936 | 1.104                 | 1.098 | 1.093 | 1.0846 | 0.0826 | 0.0704                        | 0.0643 | 0.0580 |  |  |
| 1.00  | 1.106                 | 1.098 | 1.093 | 1.0845 | 0.0757 | 0.0666                        | 0.0615 | 0.0556 |  |  |

Table III. Density and Viscosity Data of the Dimethyl Sulfoxide (1)-Pyridine (2) System

|       |        | density, g m $L^{-1}$ |       |        | viscosity, kg $m^{-1} s^{-1}$ |        |        |        |  |
|-------|--------|-----------------------|-------|--------|-------------------------------|--------|--------|--------|--|
| $X_2$ | 25 °C  | 35 °C                 | 45 °C | 55 °C  | 25 °C                         | 35 °C  | 45 °C  | 55 °C  |  |
| 0.0   | 1.0989 | 1.093                 | 1.086 | 1.082  | 0.1944                        | 0.1601 | 0.1310 | 0.1140 |  |
| 0.041 | 1.0928 | 1.0872                | 1.080 | 1.076  | 0.1859                        | 0.1535 | 0.1246 | 0.1107 |  |
| 0.089 | 1.0871 | 1.081                 | 1.075 | 1.069  | 0.1803                        | 0.1470 | 0.1191 | 0.1053 |  |
| 0.180 | 1.075  | 1.069                 | 1.063 | 1.0575 | 0.1600                        | 0.1318 | 0.1098 | 0.0969 |  |
| 0.274 | 1.063  | 1.0568                | 1.050 | 1.045  | 0.1488                        | 0.1200 | 0.1042 | 0.0891 |  |
| 0.369 | 1.0516 | 1.045                 | 1.039 | 1.034  | 0.1380                        | 0.1130 | 0.0972 | 0.0853 |  |
| 0.468 | 1.0391 | 1.0337                | 1.027 | 1.022  | 0.1280                        | 0.1044 | 0.0922 | 0.0797 |  |
| 0.569 | 1.0284 | 1.022                 | 1.015 | 1.009  | 0.1185                        | 0.0984 | 0.0858 | 0.0758 |  |
| 0.673 | 1.0160 | 1.010                 | 1.003 | 0.998  | 0.1097                        | 0.0913 | 0.0795 | 0.0706 |  |
| 0.779 | 1.005  | 0.998                 | 0.992 | 0.986  | 0.1029                        | 0.0849 | 0.0753 | 0.0663 |  |
| 0.888 | 0.993  | 0.986                 | 0.982 | 0.974  | 0.0969                        | 0.0791 | 0.0723 | 0.0625 |  |
| 0.943 | 0.990  | 0.9798                | 0.978 | 0.967  | 0.0975                        | 0.0760 | 0.0715 | 0.0606 |  |
| 1.0   | 0.9811 | 0.9749                | 0.968 | 0.962  | 0.0903                        | 0.0750 | 0.0675 | 0.0596 |  |

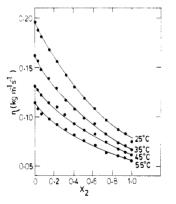



Figure 1. Dependence of viscosity on mole fraction  $(X_2)$  and temperature for the Me<sub>2</sub>SO (1)-CB (2) system.

where  $\Delta 12 = \alpha_{12} X_1 X_2$  is a term representing departure from a noninteracting system and  $\alpha_{12} = \alpha_{21}$  is the interaction parameter. Either  $\alpha_{12}$  or  $\alpha_{21}$  can be expressed as a linear function of composition

$$\alpha_{12} = \beta_{12}' + \beta_{12}''(X_1 - X_2)$$
(3a)

From an initial guess of the values of the coefficients  $\beta_{12}$ ' and  $\beta_{12}$ '', the values of  $\alpha_{12}$  were computed.

A polynomial equation of the type

$$\eta = \eta_1 X_1 + \eta_2 X_2 + X_1 X_2 [a + b(X_1 - X_2) + c(X_1 - X_2)^2 + ...]$$
(4)

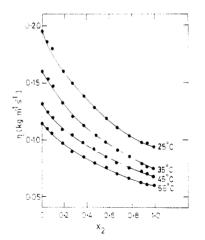



Figure 2. Same as in Figure 1 for the Me<sub>2</sub>SO (1)-PY (2) system.

has also been frequently used to predict viscosity data for the mixtures. In eq 4, the coefficients a, b, and c were calculated from the least-squares method.

The results of the computer analysis of all the relations (i.e., eq 1-4) are summarized in Table V which shows the values of several coefficients of eq 1-4 for the systems included in this study. From the coefficients of Table V, the binary viscosities were back calculated. Judging from the closeness of the fit between the computed results and the experimental data, it can be inferred that all the theories were found to be satisfactory.

Table IV. Density and Viscosity Data of the Dimethyl Sulfoxide (1)-Methyl Ethyl Ketone (2) System

|       |        | density, g mL <sup>-1</sup> |        |        |        | viscosity, kg $m^{-1} s^{-1}$ |        |        |  |
|-------|--------|-----------------------------|--------|--------|--------|-------------------------------|--------|--------|--|
| $X_2$ | 25 °C  | 35 °C                       | 45 °C  | 55 °C  | 25 °C  | 35 °C                         | 45 °C  | 55 °C  |  |
| 0.0   | 1.099  | 1.0929                      | 1.087  | 1.0803 | 0.1926 | 0.1604                        | 0.1325 | 0.1138 |  |
| 0.054 | 1.085  | 1.0793                      | 1.073  | 1.067  | 0.1762 | 0.1448                        | 0.1230 | 0.1050 |  |
| 0.107 | 1.071  | 1.0657                      | 1.059  | 1.053  | 0.1615 | 0.1335                        | 0.1142 | 0.0978 |  |
| 0.213 | 1.0429 | 1.0377                      | 1.029  | 1.025  | 0.1372 | 0.1138                        | 0.0982 | 0.0854 |  |
| 0.317 | 1.0143 | 1.0090                      | 1.000  | 0.9963 | 0.1162 | 0.0979                        | 0.0852 | 0.0749 |  |
| 0.419 | 0.985  | 0.980                       | 0.973  | 0.9660 | 0.0988 | 0.0830                        | 0.0734 | 0.0655 |  |
| 0.520 | 0.955  | 0.949                       | 0.941  | 0.9360 | 0.0835 | 0.0712                        | 0.0639 | 0.0574 |  |
| 0.619 | 0.925  | 0.919                       | 0.912  | 0.9050 | 0.0717 | 0.0621                        | 0.0561 | 0.0507 |  |
| 0.716 | 0.896  | 0.903                       | 0.881  | 0.8760 | 0.0627 | 0.0547                        | 0.0496 | 0.0446 |  |
| 0.812 | 0.865  | 0.858                       | 0.850  | 0.8433 | 0.0540 | 0.0473                        | 0.0436 | 0.0398 |  |
| 0.907 | 0.834  | 0.828                       | 0.8186 | 0.8126 | 0.0462 | 0.0407                        | 0.0383 | 0.0353 |  |
| 0.954 | 0.819  | 0.801                       | 0.803  | 0.7930 | 0.0438 | 0.0379                        | 0.0361 | 0.0330 |  |
| 1.0   | 0.802  | 0.796                       | 0.7938 | 0.7799 | 0.0407 | 0.0363                        | 0.0343 | 0.0315 |  |

Table V. Computer Analysis of Parameters of Eq 1-4

| McAlli<br>formu |             |             | Auslander formula <sup>b</sup> |                 | Heric<br>formula. <sup>c</sup> | pol                | polynomial formula <sup>d</sup> |         |         |
|-----------------|-------------|-------------|--------------------------------|-----------------|--------------------------------|--------------------|---------------------------------|---------|---------|
| temp, °C        | $\eta_{12}$ | $\eta_{21}$ | A <sub>21</sub>                | B <sub>21</sub> | B <sub>12</sub>                | $\alpha_{12}$      | a                               | Ь       | c       |
|                 |             | A. Di       | methyl Sulfo                   | xide (1)-Chlo   | robenzene (2)                  | $M_1 = 78, M_2$    | = 112.5                         |         |         |
| 25              | 1.4076      | 1.0287      | -0.7033                        | -2.4096         | -0.4193                        | -0.0143            | -0.6256                         | -0.1218 | -0.0238 |
| 35              | 1.1248      | 0.8897      | -1.6742                        | -1.0757         | -0.9490                        | -0.0570            | -0.5316                         | 0.2133  | -0.0452 |
| 45              | 0.9958      | 0.7809      | -0.9925                        | -1.7820         | -0.5615                        | -0.0679            | -0.4098                         | -0.1245 | -0.0421 |
| 55              | 0.8117      | 0.6838      | -1.5605                        | -1.4052         | -0.6803                        | -0.1647            | -0.3393                         | -0.1869 | -0.3437 |
|                 |             | В.          | Dimethyl Su                    | lfoxide (1)-P   | yridine (2): <i>I</i>          | $M_1 = 78, M_2 =$  | 79.1                            |         |         |
| 25              | 1,3432      | 1.1116      | -0.2229                        | -9.0233         | -0.1263                        | -0.2441            | -0.7332                         | -0.2903 | 0.0974  |
| 35              | 1.1028      | 0.9108      | -0.7885                        | -2.7563         | -0.3501                        | -0.2847            | -0.6008                         | -0.2463 | -0.1863 |
| 45              | 0.9344      | 0.8193      | -0.2966                        | -7.0706         | -0.0843                        | -0.2177            | -0.3894                         | -0.2205 | -0.1688 |
| 55              | 0.8352      | 0.7012      | -1.1254                        | -1.7906         | -0.6453                        | -0.2231            | -0.3390                         | -0.1329 | -0.1251 |
|                 |             | C. Dim      | ethyl Sulfoxia                 | de (1)-Methy    | l Ethyl Keton                  | le (2): $M_1 = 78$ | $M_2 = 72$                      |         |         |
| 25              | 1.1139      | 0.6647      | -0.7482                        | -2.9874         | -0.3447                        | -0.0986            | -1.2215                         | -0.3849 | -0.1688 |
| 35              | 0.9223      | 0.5774      | -0.5030                        | -4.4938         | -0.2262                        | -0.1312            | -0.9646                         | -0.3480 | -0.2219 |
| 45              | 0.8285      | 0.5148      | 0.3869                         | 5.0404          | 0.1153                         | -0.0963            | -0.7100                         | -0.1558 | 0.0179  |
| 55              | 0.7230      | 0.4746      | -0.5415                        | -3.6340         | -0.2768                        | -0.0633            | -0.5408                         | -0.1505 | -0.0985 |

<sup>a</sup>Equation 1. <sup>b</sup>Equation 2. <sup>c</sup>Equation 3a. <sup>d</sup>Equation 4.

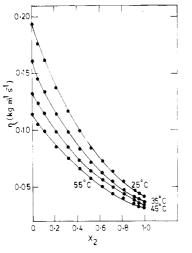



Figure 3. Same as in Figure 1 for the  $Me_2SO$  (1)-MEK (2) system.

As a further analysis of the experimental data, an attempt has also been made to predict excess thermodynamic functions, such as enthalpy of mixing ( $\Delta H_{mix}^{\dagger}$ ) and entropy of mixing ( $\Delta S_{mix}^{\dagger}$ ) by using the following equation which was developed earlier by Eyring and co-workers (12-14):

$$\ln \nu M = \left[ \ln hN - \frac{\Delta S_{mix}^{*}}{R} \right] + \frac{\Delta H_{mix}^{*}}{RT}$$
(5)

Here,  $\nu (\equiv \eta / \rho)$  refers to kinematic viscosity of the mixture, M ( $= M_1 + M_2$ ) is the algebraic sum of the component molecular weights, and the rest of the symbols have their usual meanings.

Table VI. Thermodynamic Excess Mixing Functions for the Me<sub>2</sub>SO (1)-CB (2) System

|       | $\Delta H_{\min}^*,$ | $\Delta G_{\min}$ ,* kJ mol <sup>-1</sup>                      |        |        |        |        |
|-------|----------------------|----------------------------------------------------------------|--------|--------|--------|--------|
| $X_2$ | kJ mol <sup>-1</sup> | $-\Delta S_{\min}^*,$<br>J mol <sup>-1</sup> deg <sup>-1</sup> | 25 °C  | 35 °C  | 45 °C  | 55 °C  |
| 0.035 | 14.293               | 46.412                                                         | 28.036 | 28.500 | 28.964 | 29.428 |
| 0.072 | 14.272               | 45.800                                                         | 27.920 | 28.378 | 28.836 | 29.294 |
| 0.148 | 13.984               | 46.196                                                         | 27.750 | 28.212 | 28.674 | 29.136 |
| 0.230 | 13.894               | 46.481                                                         | 27.545 | 28.010 | 28.475 | 28.940 |
| 0.318 | 12.724               | 48.941                                                         | 27.309 | 27.798 | 28.287 | 28.777 |
| 0.410 | 12.137               | 50.149                                                         | 27.082 | 27.583 | 28.085 | 28.586 |
| 0.511 | 11.783               | 50.589                                                         | 26.858 | 27.364 | 27.870 | 28.376 |
| 0.619 | 10.708               | 53.502                                                         | 26.652 | 27.187 | 27.722 | 28.257 |
| 0.736 | 10.723               | 52.472                                                         | 26.360 | 26.865 | 27.409 | 27.934 |
| 0.863 | <b>9</b> .373        | 56.021                                                         | 26.068 | 26.628 | 27.188 | 27.748 |
| 0.932 | 8.919                | 57.117                                                         | 25.940 | 26.511 | 27.082 | 27.653 |

Table VII. Thermodynamic Excess Mixing Functions for the Me<sub>2</sub>SO (1)-PY (2) System

|       | $\Delta H_{\rm mix}^{*}$ , | $-\Delta S_{\min}^*$ ,                | $\Delta G_{\min}^*$ , kJ mol <sup>-1</sup> |        |        |        |  |  |
|-------|----------------------------|---------------------------------------|--------------------------------------------|--------|--------|--------|--|--|
| $X_2$ | kJ mol <sup>-1</sup>       | $J \text{ mol}^{-1} \text{ deg}^{-1}$ | 25 °C                                      | 35 °C  | 45 °C  | 55 °C  |  |  |
| 0.041 | 13.930                     | 45.587                                | 27.515                                     | 27.971 | 28.427 | 28.883 |  |  |
| 0.089 | 14.419                     | 43.717                                | 27.446                                     | 27.884 | 28.321 | 28.758 |  |  |
| 0.180 | 13.277                     | 46.647                                | 27.178                                     | 27.645 | 28.111 | 28.576 |  |  |
| 0.274 | 13.064                     | 46.812                                | 27.014                                     | 27.482 | 27.950 | 28.418 |  |  |
| 0.370 | 12.507                     | 48.151                                | 26.856                                     | 27.338 | 27.820 | 28.301 |  |  |
| 0.470 | 12.131                     | 48.879                                | 26.597                                     | 27.185 | 27.674 | 28.162 |  |  |
| 0.569 | 11.503                     | 50.448                                | 26.536                                     | 27.041 | 27.545 | 28.050 |  |  |
| 0.672 | 11.401                     | 50.244                                | 26.374                                     | 26.877 | 27.379 | 27.882 |  |  |
| 0.779 | 11.216                     | 50.406                                | 26.237                                     | 26.741 | 27.245 | 27.749 |  |  |
| 0.888 | 10.977                     | 50.791                                | 26.112                                     | 26.620 | 27.128 | 27.636 |  |  |
| 0.944 | 11.529                     | 48.909                                | 26.104                                     | 26.598 | 27.082 | 27.571 |  |  |

The plots of ln  $\nu M$  vs. 1/T were found to be linear in the temperature range studied and the values of  $\Delta {H_{\rm mix}}^*$  and  $\Delta {S_{\rm mix}}^*$ 

Table VIII. Thermodynamic Excess Mixing Functions for Me<sub>2</sub>SO (1)-MEK (2) System

|       | $\Delta H_{\rm mix}^{*}$ , | $-\Delta S_{\min}^{*}$ ,              | $\Delta G_{\min}^*$ , kJ m |        |        | 1      |  |
|-------|----------------------------|---------------------------------------|----------------------------|--------|--------|--------|--|
| $X_2$ | kJ mol <sup>-1</sup>       | J mol <sup>-1</sup> deg <sup>-1</sup> | 25 °C                      | 35 °C  | 45 °C  | 55 °C  |  |
| 0.054 | 13.503                     | 46.260                                | 27.289                     | 27.752 | 28.214 | 28.677 |  |
| 0.108 | 13.044                     | 47.185                                | 27.105                     | 27.577 | 28.049 | 28.521 |  |
| 0.213 | 12.277                     | 48.601                                | 26.760                     | 27.245 | 27.732 | 28.218 |  |
| 0.317 | 11.444                     | 50.282                                | 26.428                     | 26.981 | 27.434 | 27.936 |  |
| 0.418 | 10.515                     | 52.218                                | 26.076                     | 26.598 | 27.120 | 27.642 |  |
| 0.520 | 9.479                      | 54.566                                | 25.740                     | 26.285 | 26.831 | 27.377 |  |
| 0.619 | 8.703                      | 56.192                                | 25.448                     | 26.010 | 26.572 | 27.134 |  |
| 0.717 | 8.369                      | 56.434                                | 25.186                     | 25.750 | 26.315 | 26.879 |  |
| 0.813 | 7.422                      | 58.678                                | 24.908                     | 25.495 | 26.082 | 26.569 |  |
| 0.907 | 6.991                      | 61.315                                | 24.609                     | 25.216 | 25.829 | 26.443 |  |
| 0.954 | 6.506                      | 60.401                                | 24.506                     | 25.110 | 25.714 | 26.318 |  |

were estimated in each case from the slope and intercept of the linear plot. The values of  $\Delta H_{mix}^{*}$  and  $\Delta S_{mix}^{*}$  were used to calculate the excess free energies ( $\Delta G_{mix}^*$ ) by using

$$\Delta G_{\rm mix}^{\ \ *} = \Delta H_{\rm mix}^{\ \ *} - T \Delta S_{\rm mix}^{\ \ *} \tag{6}$$

The numerical values of the three excess functions are shown in Tables VI-VIII. In each of these tables, the negative entropy is due to the attraction between two components of the binary mixtures indicating the nonideal behavior of each mixture. It is seen that the magnitude of entropy increases with an increase in composition of the second component in the mixture. The calculated values of  $\Delta G_{mix}^{*}$  tend to increase by about 1.3-1.8 kJ/mol with temperature, but decrease by about 1.3-2.8 kJ/mol with increasing concentration of the second component in the mixture. A similar trend is also noticeable in case of  $\Delta H_{mix}^{*}$  values (see Tables VI-VIII). In general, it may be noted that the values of all the three thermodynamic excess functions have the same order of magnitude which agree closely with the recent literature findings (15, 16).

Recently, Aminabhavi and Munk (17) have developed theoretical relations to treat the changes in volume during mixing of a two-component system using density data on binary mixtures; the validity of these relations were also tested by Aminabhavi et al. (18-20) on a number of binary mixtures. The relations have been derived based on the volume fraction

$$\Delta V_{\text{mix}}^* = \sum_i (N_i V_i) V_{12} \phi_i \phi_2 \tag{7}$$

where  $N_i$  and  $V_i$  are the number of moles and molar volume of the *i*th component in the mixture;  $\phi_i$  represents the volume fraction [defined as  $\phi_i \equiv V_i X_i / (V_1 X_1 + V_2 X_2)$ ];  $V_{12}$  is excess volume parameter. This parameter can be calculated from the experimental densities of the mixtures and of pure components by using

$$V_{12} = (\phi_1 \rho_1 + \phi_2 \rho_2 - \rho) / \phi_1 \phi_2 \rho \tag{8}$$

where  $\rho$ 's represent the densities. The calculated values of V<sub>12</sub>

Table IX. Computer Analysis of Parameters of Eq 9

|                               | temp. | ŗ             | parameters    |               |  |  |  |  |
|-------------------------------|-------|---------------|---------------|---------------|--|--|--|--|
| system                        | °C    | $10^{2}a_{0}$ | $10^{2}a_{1}$ | $10^{2}a_{2}$ |  |  |  |  |
| Me <sub>2</sub> SO (1)-CB (2) | 25    | -0.5569       | 1.0606        | 2.4941        |  |  |  |  |
| -                             | 35    | -0.0959       | -0.1928       | -0.1684       |  |  |  |  |
|                               | 45    | -0.0011       | -0.3029       | 0.0020        |  |  |  |  |
|                               | 55    | -0.6308       | -0.3755       | 0.1087        |  |  |  |  |
| $Me_2SO(1)-PY(2)$             | 25    | 0.5289        | -1.9612       | -2.4127       |  |  |  |  |
|                               | 35    | -0.0902       | 0.5791        | 1.1173        |  |  |  |  |
|                               | 45    | 0.6518        | -1.9464       | -4.1764       |  |  |  |  |
|                               | 55    | 0.0096        | 0.4500        | 0.9320        |  |  |  |  |
| $Me_2SO(1) - MEK(2)$          | 25    | -11.0531      | -5.0579       | -3.5095       |  |  |  |  |
|                               | 35    | -12.9621      | -4.3317       | 0.4193        |  |  |  |  |
|                               | 45    | -11.5962      | 2.3482        | 9.5095        |  |  |  |  |
|                               | 55    | -12.8804      | -3.7034       | -0.7862       |  |  |  |  |

(as given by eq 8) are further fitted to a quadratic equation of the type

$$/_{12} = a_0 + a_1(\phi_2 - \phi_1) + a_2(\phi_2 - \phi_1)^2$$
(9)

The least-squares analysis of eq 9 yields the parameters  $a_0$ ,  $a_1$ , and  $a_2$  which are given in Table IX. The scatter of points throughout the best calculated line does not justify any attempt at interpreting these parameters. It appears, therefore, that no structure correlation can be made between the mixing species and the excess volume parameter  $V_{12}$ .

Note Added in Proof. The values reported for viscosity in the tables and figures are in kg m<sup>-1</sup> s<sup>-1</sup>. However, when the data were fitted to theoretical relations viscosities in centipoise (cP) were used.

Registry No. CB, 108-90-7; MEK, 78-93-3; Py, 110-86-1; Me<sub>2</sub>SO, 67-68-5.

#### Literature Cited

- (1) Marcus, Y. "Introduction to Liquid State Chemistry"; Wiley: New York, 1977.
- McAllister, R. A. AIChE J. 1960, 6, 427. (2)
- (3) Auslander, G. Br. Chem. Eng. 1964, 9, 610.
   (4) Heric, E. L. J. Chem. Eng. Data 1966, 11, 66.

- (4) Heric, E. L. J. Chem. Eng. Data 1966, 11, 66.
  (5) Heric, E. L.; Brewer, J. G. J. Chem. Eng. Data 1967, 12, 574.
  (6) Aminabhavi, T. M.; Patel, R. C.; Bridger, K.; Jayadevappa, E. S.; Prasad, B. R. J. Chem. Eng. Data 1982, 27, 125.
  (7) Aminabhavi, T. M.; Munk, P. J. Phys. Chem. 1980, 84, 442.
  (8) Parker, A. J. Adv. Org. Chem. 1965, 5, 1.
  (9) Parker, A. J. Adv. Org. Chem. Soc. 1962, 16, 163.
  (10) "Technique of Organic Chemistry"; Weissberger, A., Ed.; Interscience: New York, 1955; Vol. VII.
  (11) "Handbook of Chemistry and Physics"; Hodgman, C. D., Ed.; CRC Press: Boca Raton, FL, 1959, and references therein.
  (12) Glastone, S.; Lakler, K. J.; Evring, H. "The Theory of Rate Processes". (10)
- (11)
- (12) Glastone, S.; Laldler, K. J.; Eyring, H. "The Theory of Rate Processes", McGraw-Hill: New York, 1941. (13) Moore, R. J.; Gibbs, P.; Eyring, H. J. Phys. Chem. 1953, 57, 172.
- (14) Gruz, T. E. In "Transport Phenomena in Aqueous Solutions"; Adam Hilger: London, 1969; p 93.

- (15) Singh, R. P.; Sinha, C. P. *Indian J. Chem., Sect A* **1983**, *22A*, 282.
  (16) Islam, I.; Ibrahim, M. *Indian J. Chem., Sect A* **1982**, *21A*, 1113.
  (17) Aminabhavi, T. M.; Munk, P. *Macromolecules* **1979**, *12*, 1186.
  (18) Aminabhavi, T. M.; Patel, R. C.; Jayadevappa, E. S.; Prasad, B. R. J. Chem. Eng. Data 1982, 27, 50.
- Aminabhavi, T. M.; Jayadevappa, E. S.; Prasad, B. R. Indian J. Chem., Sect. A 1983, 22A, 227. (19)
- (20) Aminabhavi, T. M. J. Chem. Educ. 1983, 60, 117.

Received for review September 12, 1984. Accepted July 25, 1985.